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Abstract
The surface energy, particularly for nanoparticles, is one of the most important quantities in understanding the thermodynamics of

particles. Therefore, it is astonishing that there is still great uncertainty about its value. The uncertainty increases if one questions its

dependence on particle size. Different approaches, such as classical thermodynamics calculations, molecular dynamics simulations,

and ab initio calculations, exist to predict this quantity. Generally, considerations based on classical thermodynamics lead to the

prediction of decreasing values of the surface energy with decreasing particle size. This phenomenon is caused by the reduced num-

ber of next neighbors of surface atoms with decreasing particle size, a phenomenon that is partly compensated by the reduction of

the binding energy between the atoms with decreasing particle size. Furthermore, this compensating effect may be expected by the

formation of a disordered or quasi-liquid layer at the surface. The atomistic approach, based either on molecular dynamics simula-

tions or ab initio calculations, generally leads to values with an opposite tendency. However, it is shown that this result is based on

an insufficient definition of the particle size. A more realistic definition of the particle size is possible only by a detailed analysis of

the electronic structure obtained from initio calculations. Except for minor variations caused by changes in the structure, only a

minor dependence of the surface energy on the particle size is found. The main conclusion of this work is that surface energy values

for the equivalent bulk materials should be used if detailed data for nanoparticles are not available.
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Review
Introduction
With respect to the thermodynamics of small particles, the sur-

face energy is an essential, and in many cases the dominant,

quantity. Therefore, it is astonishing that so much uncertainty

remains about this physical quantity. The concept of surface

energy was introduced by Gibbs using the term “surface

tension” [1,2]. In the meantime, it has become clear that in case
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of solids one has to distinguish between “surface energy” and

“surface stress”. Both quantities are related by the Shuttleworth

equation [3]. Since the surface stress, σ, exerts a pressure, p, on

a curved solid (e.g., for a sphere with the radius R, p = 2σ/R) the

elastic strain energy is stored in the particle. The surface energy

may be defined as the as excess energy, i.e., the difference in

the energy between a particle and the same number of atoms in

an infinitely extended solid [4]. This definition does not take

into account that the surface energy may be different for differ-

ent crystallographic planes at the surface of a facetted particle.

It is common that only average values are discussed, as is the

case in this paper.

According to Fried and Gurtin [5], the surface energy, γ, may be

split-up into a term depending on the binding in the solid

(“chemical contribution”), γbond, and into a minor term caused

by the stress state due to the surface stress (“mechanical contri-

bution”), γmech, as

(1)

The contribution of the mechanical energy to the surface energy

is, compared to the chemical contribution, minor [3]. Based on

this clarification, it is obvious that the lattice contraction data

for small particles, abundant in the literature, may be used to

calculate the size dependent surface stress, (see, e.g., [6-8]) but

not, as it is done sometimes [9,10], to calculate the surface

energy (“surface tension”).

The analysis of the surface energy data of nanoparticles and the

dependence of the surface energy on particle size and tempera-

ture is of essential importance because the phase (crystalline or

liquid) depends on the particle size. Additionally, it is possible

that the particles form a stable glass phase with very different

properties. A typical example is demonstrated in Figure 1,

which depicts the course of the melting temperature of gold par-

ticles on the inverse particle size [11]. Besides the well-known

inverse linear dependence according to Pawlow [12] (Range I),

Tmelt–bulk − Tmelt–nano  γ/d, a range where the melting temper-

ature is independent of the particle size (Range II) can also be

observed. The experimental error bar also covers the results of

other authors. In this range, the particles are glassy, indicating a

structure more stable than a crystalline one [13,14].

The applicability of the Pawlow-relationship over a wide range

of particle sizes, as shown in Figure 1, is a strong indicator that

the surface energy of gold particles is, down to a particle diame-

ter, d of ≈2 nm, largely independent of the particle size. Other

experimental results on aluminum [15] and lead [16] indicate

the correctness of this finding. Since a direct measurement of

the surface energy of nanoparticles is more or less impossible,

Figure 1: Melting temperature of gold nanoparticles according to
Castro et al. [11] and Cluskey et al. [13]. One realizes two ranges in
the data of Castro et al.: Within the experimental error bar (shaded
area) results of Castro et al., the result of Cluskey et al., obtained on
Au55 clusters, is also located.

many attempts have been made to calculate this quantity. It is

astonishing and disconcerting that calculations based either on

classical thermodynamics or on molecular dynamics and ab

initio methods have generally resulted in an opposite tendency

with respect to the influence of the particle size. Obviously,

there are additional structural phenomena not taken into

account. It is the intention of this paper to depict these differ-

ences and to offer some explanations. To do this, the basic ideas

of both approaches are explained in this paper.

Approach based on classical
thermodynamics and continuum
considerations
When Gibbs [1,2] introduced surface energy using the term sur-

face tension he predicted a decrease of the surface energy with

decreasing droplet size. As an early approach, analyzing the

equilibrium between a liquid phase and the surrounding vapor,

Tolman [17] estimated the surface energy of small droplets.

These considerations led to the relation

(2)

In Equation 2 the quantity d, where d = 2R, stands for the parti-

cle diameter and R for its radius; δ is a material-dependent con-

stant called the Tolman-length, which is in the range of

10−10 m. Tolman stated that his approach may fail in the case of

very small particles because the atomic structure of the particle

is not taken into account. Furthermore, he stated that the quanti-

ty δ is not necessarily constant; it could even change its sign

under certain conditions. It is obvious from Equation 2 that, in

case of δ > 0, the surface energy is reduced with decreasing par-

ticle diameter.
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More generally, one may assume that the surface energy is

proportional to the number of broken bonds at the surface atoms

times the energy per bond. Therefore, one may expect a rela-

tion such as

(3)

In Equation 3 the quantity Eb(d) stands for the energy per bond

and the quantity q, the relative coordination number, stands for

the ratio of the coordination number of a surface atom nsurface to

that of an atom in the undisturbed bulk material nbulk. Certainly,

the validity of the Tolman equation (Equation 2) requires a

strong dependence of the binding energy Eb(d) with the particle

size.

Models using the ratio q yield in the same tendency as Tolman

introduced. This ratio q is also used to estimate the size depen-

dence of the thermodynamic quantities [18-22]. Similar estima-

tions, using the number of broken bonds at the surface, were

performed by Lu and Jiang [23]. The result of counting broken

bonds or applying relative coordination numbers depends on the

crystal structure and on the crystallographic plane. Therefore,

quite often, one may find examples of these coordination

numbers for different structures. Consequently, such a model is

not suitable for generalized considerations. For the surface

coordination number, the same crystallographic aspects are

valid as in case of the broken bonds at the surface. For these

more generalized considerations, it is sufficient to apply a

simple first approximation. This allows for estimating the rela-

tive number of neighbors of an atom located at the surface of a

spherical particle. To do this, a particle with the diameter d = 2R

and the distance r to next neighbors is considered. In this case,

the number of next neighbors is proportional the volume of the

intersection between the particle and a sphere with the diameter

2r having its center at the surface of the particle. (Certainly, this

simplified treatment is not expedient for anisotropic materials.)

These considerations are visualized in Figure 2.

From geometric considerations, as depicted in Figure 2, the

relative coordination number q, the ratio of the coordination

number of an atom at the surface of the particle to the coordina-

tion number of an atom in the bulk – is calculated as ratio of the

volumes yielding

(4)

This equation may be approximated with sufficient accuracy ac-

cording to [24] as

Figure 2: Visualization of the setting for the estimation the number of
next neighbors (coordination number) of an atom at the surface of a
spherical particle with diameter d = 2R. The volume of the intersection
of this sphere with a second sphere of the radius r, representing the
distance to the next neighbors, allows an approximation for the
possible number of next neighbors.

(5)

Comparing Equation 2 and Equation 5 with respect to the func-

tional relations for the dependency on d = 2R, one realizes that

these two expressions are, except for the factor 0.5, more or less

identical. Both equations use an empirical parameter (r or δ) as

a variable. Equation 4 is just the exact expression of this ap-

proach. Looking at Figure 2, it is obvious that the smallest parti-

cle radius where above considerations are valid is R = r.

Analyzing Equation 5, one realizes that the quantity q is 0.5 at a

plane surface (R → ∞) and 1/3 for R = r. The quantity q, ac-

cording to Equation 5, as a function of the particle diameter is

plotted in Figure 3.

For particle sizes smaller than R = r the range of next neighbors

of diametrically opposite surface atoms overlap; this is the limit

of this model. Therefore, from Figure 3 one learns that the

quantity q gives useful values q ≥ 1/3 only in the size range for

particle diameters larger than 2r. Possibly, this type of func-

tional relationship leads to a description of the reality.

As shown in Equation 3, the surface energy is proportional to

the relative coordination number. Theoretically more elabo-

rated studies lead to descriptions of the type [17,19,20] as

(6)
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Figure 3: Relative coordination number q of an atom at the surface of
a spherical particle as function of the particle diameter d = 2R using
Equation 5.

In Equation 6 the quantities α and β are particle-size-indepen-

dent constants. The quantity of these constants depends on the

applied theory (see, e.g., [23,25,26]). For d = 2/α Equation 6

delivers a value of zero for the surface energy; for values

d < 2/α the results are negative. Approximations of the surface

energy are only possible in the range d > 2/α. Figure 4 displays

the course of the surface energy as described by Equation 6.

The limitations for meaningful results are well visible in this

graph.

Figure 4: Graph of Equation 6. Also in this case, a lower limit for the
particle diameter exists (α = β = 1).

As a further example for theoretically derived values for the

surface energy γ, Figure 5 displays the surface energy of gold

nanoparticles as a function of the particle diameter [26]. These

values were obtained using a function of the type of Equation 6.

As was discussed in context with Equation 6, these results are

only valid for γ ≥ 0. To demonstrate the insignificant role of the

specific surface strain energy on the surface energy, the insert in

Figure 5 displays the particle size dependence of this quantity.

Although its contribution increases drastically with decreasing

particle size, its influence is negligible.

Figure 5: Surface energy for gold nanoparticles as function of the par-
ticle diameter according to Gang et al. [26]. The insert shows the spe-
cific strain energy related to the particle surface. Excerpt with permis-
sion from [26], copyright 2006 by the American Physical Society.

More recent, Xie et al. [27] published a model to estimate the

surface energy for nanoparticles, which leads to a very high

constant value of the surface energy for small particle diame-

ters. However, this result was obtained by assuming the ratio of

the number of bonds in the interior is 0.25. This ratio is equiva-

lent to number of bonds in the bulk to the number of bonds at

the surface. The quantity q is defined in Equation 4 or

Equation 5 and set as q = 0.25. Additionally, the energy for one

bond, Eb(d), was set constant and is not particle size dependent.

However, the bonding energy in-between the atoms Eb(d)

decreases significantly with increasing particle size [28].

Models have been published showing that the energy Eb(d) is

(in good approximation) inversely proportional to the particle

size for small particles [28], leaving the concept of excess

energy for the surface energy. This approach was published in a

series of papers discussing the particle size dependence of prop-

erties. In a communication on scaling laws of physical proper-

ties, Guibiers et al. [29,30] showed that many of the structural

properties of small particles show an inverse proportionality

with particle size. This led to the development of a general law

governing most of the properties. The size dependence of the

property ξ is given as

(7)

In Equation 7 the quantity d stands for the particle diameter,

αshape is a shape-dependent factor, s = 0.5 for properties related
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to quasi-particles following the Fermi–Dirac statistics (e.g.,

melting, ferromagnetism, diffusion, etc.) and s = 1 for proper-

ties related to quasi-particles following the Bose–Einstein statis-

tics (e.g., superconductivity or vibration) [30-32]. Karasevskii

[33] started with a different approach based on size dependent

quantization of vibrational modes, resulting in an inverse

proportionality between thermodynamic quantities and particle

size.

The considerations above assume implicitly that the bonding

energy in between the atoms of the particle and at the surface is

independent of the particle size. This assumption is not neces-

sarily correct [25]. In this context, the melting processes of

nanoparticles must be considered. The general assumption of

homogenous melting, which means that the whole particle melts

suddenly at the melting point, is not realistic in many cases.

More realistic assumptions are either the formation of a liquid

or liquid-like layer at temperatures significantly below the

melting temperature or a continuous process of melting starting

at the surface. Thermodynamic calculations support these

models [34,35]. Sakai [34] concludes that the phenomenon of a

liquid-like surface layer is, at least for the example of lead,

restricted to particles larger than a critical size in the range of

4 nm; otherwise, the particles melt all at once. For larger parti-

cles, this layer may reach a thickness of more than 1.2 nm. For

smaller particles such a layer may be extremely thin. The results

published by Chang and Johnson [35] do not show such a size

limit. In contrast, the phenomenon of premelting at the surface

enhances with decreasing particle size. Figure 6 displays

Landau’s order parameter M [36] for different particle diame-

ters as function of the radial distance from the particle center,

denoted as radius [35]. This order parameter obtains the value 1

for perfectly crystallized and 0 for liquid material.

Figure 6: Landau’s order parameter M for tin particles of different par-
ticle diameters as function of the radius at a temperature of 440 K. The
term “radius” represents the radial distance to the particle center [35].

Certainly, such a surface layer with reduced crystalline order

has a surface energy, which is closer to that of a liquid rather

than a crystalline solid. Also this result supports arguments

leading to the decrease of the surface energy with decreasing

particle size, at least in the vicinity of the melting temperature.

Certainly, this behavior influences the surface energy.

Phase field studies by Levitas and Samani [37,38] analyzed

melting and solidification of small particles. In general, these

studies led to very similar conclusions as reported by Chang and

Johnson [35]. However, it must be noted that Levitas and

Samani found that in addition to the traditionally described

barrierless melting, a hysteretic jump-like premelting phenome-

non, also connected to bi-stable states between solid and liquid

phases occurs. Also these results predict (for certain particle

sizes) the existence of a layer with reduced order, possibly a

premelted liquid layer at the surface of a crystallized particle.

From the experimental data on the melting of gold [11,39] and

tin [40,41] particles, Vollath and Fischer [24] calculated the

difference between the surface energy of solid and liquid nano-

particles, Δγ = γsolid – γliquid, as a function of the particle diame-

ter. As shown in Figure 7, the results of these calculations indi-

cated a reduction of this difference for small particles with de-

creasing particle diameter.

Figure 7: Difference of the surface energy between the solid and the
liquid state at the melting temperature of the particles as function of the
particle diameter for gold and tin [24].

This reduction of the surface energy shown in Figure 7 is

certainly connected to the formation of a disordered surface

layer, as it was shown by Chang and Johnson [35]. For small

particles, Figure 6 and Figure 7 clearly demonstrate (with a high

probability) that at least the surface of nanoparticles loses order

and becomes liquid-like. Therefore, as γliquid < γsolid is always

valid, an increase of the surface energy with decreasing particle

size cannot be expected.
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Approach to the surface energy from
atomistic calculations
Molecular dynamics simulations
Molecular dynamics simulations describe the spatial movement

of atoms in a solid. The atoms interact and move in a given time

frame due to the action of interatomic forces. The mathematical

description of this potential is one of the critical problems of

this type of simulation [42]. In general, molecular dynamic

simulations are based on the laws of classical Newtonian

mechanics of multibody systems. Later developments apply

potentials derived from quantum-mechanical laws.

Compared to continuum thermodynamics, molecular dynamic

calculations give a deeper insight into the structure of small par-

ticles. A study on structure and melting of a particle with fcc

structure composed of 3302 atoms (which is equivalent to a par-

ticle diameter D in the range of 6–7 nm; D = 23 atoms times an

atomic diameter of 0.288 nm) was performed by Sang et al.

[43]. Figure 8 displays some of these results showing radial

profiles of the density as function of the particle radius and tem-

perature. Density, radius, and temperature are given in arbitrary

units.

Figure 8: Radial profiles of the density for a fcc metal cluster
consisting of 3302 atoms versus the particle radius [43]. One observes
the formation of a noncrystalline layer at the surface, which is consid-
ered liquid-like in the vicinity of the melting temperature of the particle,
T = 0.62·Tm (Tm – melting temperature of the bulk material).

Figure 8 demonstrates that the nanoparticle surface becomes

liquid-like in the vicinity of the melting temperature. Therefore,

one may assume a decreasing surface energy close to the

melting point. Such a phenomenon may not be expected at low

temperatures.

In most cases, molecular dynamic simulations of the melting

process of small nanoparticles show, at significantly lower tem-

peratures compared to the melting point, a liquid or quasi-liquid

surface [43-47]. Certainly, this finding promotes the expecta-

tion of a reduced surface energy. Results for silver nanoparti-

cles, shown by Alarifi et al. [46], demonstrate the existence of

both an outer liquid layer and subsequent a quasi-liquid transi-

tion layer at the surface of nanoparticles. Even when both the

quasi-liquid and the liquid layer are not crystallized, they can be

distinguished by their energy. Figure 9 displays the thickness of

these two kinds of surface layers for 18 nm gold particles as

function of the temperature. These layers, with reduced order,

are observed (at least for silver particles) at temperatures not too

much below the melting point.

Figure 9: Thickness of the liquid and the quasi-liquid transition layer
close to the surface of a 18 nm gold particle calculated by molecular
dynamics [46]. The phenomenon of a layer with reduced order is
restricted to temperatures not too much below the melting point of the
particles. Adapted with permission from [46], copyright 2013 American
Chemical Society.

Molecular dynamics calculations using gold as an example

resulted in a similar behavior. Qiao et al. [47] used, similarly as

Chang and Johnson [35], an order parameter defined as the

“translational order parameter” [48], which is 1 for perfectly

crystallized materials and 0 for liquids, as a function of temper-

ature and radius to characterize the status of crystallization.

Figure 10 displays some of these results for four different parti-

cles sizes as function of the temperature [47].

The results displayed in Figure 10 shows an important feature:

independent of the particle diameter, even at a temperature sig-

nificantly lower than the melting temperature, the particles do

not show perfect crystallization. It is important to keep in mind

that the values given in Figure 10 are averaged over the whole

particle. One may assume that a significant contribution to this

reduced order stems from the surface-near zone of the particle.

Consequently, these results support (at least in the temperature
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Figure 10: Translational order parameter for gold particles of different
particle diameter as function of the temperature obtained by molecular
dynamics simulations [47]. Even at a temperature significantly differ-
ent from the melting temperature, perfect crystallization is not ob-
served.

range shown in Figure 10) that the surface energy decreases

with decreasing particle diameter caused by the reduced surface

energy of the liquid state.

The formation of a liquid phase at the surface of lead particles

was already experimentally observed by Coombes [16]. These

results are depicted in Figure 11. In this figure, one clearly real-

izes two ranges of particle sizes: Range I – particles smaller

than approximately 7.5 nm follow the Pawlow equation;

Range II –larger particles, where melting starts at the surface,

display a different behavior.

Figure 11: Melting temperature of lead according to Coombes [16].
This figure shows two ranges of melting temperatures dependent on
the particle diameter. Range I follows the Pawlow relation; in this range
the particles melt as a whole. In Range II the melting starts at the sur-
face of the particle.

The results presented in Figures 8, 9, and 11 are not only

consistent in interpretation, but are also observed experimental-

ly.

Looking at the calculation of the surface energy, one is

primarily confronted with the question of definition. Based on

the general assumption describing the surface energy as excess

energy [4], Medasani et al. [49] defined the total surface energy

γ as the energy difference between n atoms in the bulk, nεbulk

and the same number of atoms forming a nanoparticle with the

surface a. Therefore, the surface energy γ may be defined as

(8)

The quantity Eparticle is the total energy of the nanoparticle. This

approach should be a simple approach to interpreting the sur-

face energy; it is highly applicable for many materials. Howev-

er, it is well known that the structure (and therefore the binding

energy of nanoparticles) is size-dependent [25]. Furthermore, in

many cases, nanoparticles exhibit a highly symmetrical struc-

ture as compared to the bulk material [50]. Nanoparticles may

even exhibit a quasi-liquid or glassy structure, states having no

equivalents in the bulk [14]. Recent calculations of the surface

energy of gold as function of the particle size by Ali et al. [51]

have predicted an increase of the surface energy with decreas-

ing particle size. However, these authors used the coordinates of

the surface atoms to calculate the surface of the particle. Earlier,

de Heer [52] pointed out that, looking at the size of a nanoparti-

cle, one has to take care of the “electron spill-out”. De Heer

proposed a correction of the particle radius of approximately

0.045–0.079 nm.

According to the results of a very detailed study of the elec-

tronic structure by Holec et al. [53], the value for the correction

of the diameter should be in the range of an atomic diameter

(≈0.288 nm). This correction is material dependent since its

origin is the extent of the electronic cloud [54], which depends

on the number of valence electrons, density of material (i.e.,

spatial density of atoms), etc. One also expects that this correc-

tion slightly increases with temperature (similar to the thermal

expansion), however, this is unlikely to have any significant

effect (and is expected to be marginal in comparison to other

simplifications). Finally, no significant influence of the particle

shape is expected as its origin (i.e., the spatial extent of the elec-

tronic cloud – because an atom is not a point-like object but

rather a “sphere” of finite diameter) does not depend on the par-

ticle shape. Figure 12 displays the original data of Ali et al. [51]

and the corrected data according to Holec et al. [53]. Ali et al.

assumed highly crystalline icosahedral particles. In Figure 12,

the surface energy is plotted versus both the particle volume (a)

and the particle diameter (b). As an approximation, the particle

diameter was calculated assuming spherical particles with equal

volume. Interestingly, the corrected data show a slight decrease

of the surface energy with decreasing particle size. Possibly,
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Figure 12: Surface energy of gold as function of the particle size ac-
cording to Ali et al. [51]. The graphs show the original data of Ali et al.
[51] and that corrected according to Holec et al. [53]. In the original
paper, the size of the icosahedron-shaped particle is defined by the
number of atoms in the particle (a). The size dependence of the sur-
face energy, obtained by both assumptions, is plotted versus the parti-
cle diameter assuming a spherical particle of equal volume (b).

this is a result of the formation of a liquid-like layer at the sur-

face.

The results of the molecular dynamics calculations of Holec et

al. [54] for the surface energy of spherical gold nanoparticles,

depicted in Figure 13, are quite comparable with the values

published by Ali et al. [51]. The particle surface in these calcu-

lations was also determined using the corrected particle diame-

ter determined according to Holec et al. [53]. It is important to

note that after the decrease of the surface energy down to a par-

ticle diameter of approximately 3 nm, an increase was found.

This slight minimum is more visible in part (b) of this figure.

As these data were obtained from fully relaxed crystalline mate-

rial at a temperature 0 K, one may assume that the data are fully

deterministic.

The results presented for metal particles are also found in a sim-

ilar manner for ceramic particles. Typical examples are demon-

strated using electron micrographs of ceramic particles.

Figure 14 displays high-resolution electron micrographs of

zirconia (a) and alumina (b) particles taken at room tempera-

Figure 13: Results of molecular dynamic calculations of the surface
energy of gold [54]. (a) All the results, whereas the range of small par-
ticles is displayed in more detail in (b). It is important to realize the
increase of the surface energy that occurs after the minimum around
the 3 nm particle diameter mark. The values corrected according to
Holec et al. [53] take the physical size of the nanoparticles into
account.

ture [55,56]. The melting point of zirconia is significantly

higher than that of alumina. In both cases, the temperature

during synthesis was around 750 K. Therefore, considering the

previous considerations, it is not astonishing that the zirconia

particle is perfectly crystallized at the surface, whereas the

alumina particle shows a noncrystalline layer at the surface.

Studies devoted to surface energy of ceramic materials based on

molecular dynamics calculations are quite rare. Naicker et al.

[57] calculated the surface energy of three modifications of

titania, TiO2, as a function of the particle size. For these three

modifications, the calculations resulted in a significant decrease

of the surface energy with decreasing particle diameter. Within

this study, the geometry of the particles was determined from

the coordinates of the atoms obtained by molecular dynamics. A

special correction for the electron cloud was not reported.

Figure 15 displays the result obtained at a temperature of 300 K.

These results are in accordance with similar results obtained for

metal particles and correlate with the high-resolution electron

micrographs displayed in Figure 14.
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Figure 14: High-resolution electron micrograph of a zirconia, ZrO2, and an alumina, Al2O3 nanoparticles. (a) A perfectly (up to the surface) crystal-
lized zirconia particle [55]. In contrast, the alumina particle displayed in (b) shows that the lattice fringes do not continue to the surface of the particle
[56].

Figure 15: Surface energy of the three modifications of titania at a
temperature of 300 K as function of the particle diameter according to
Naicker et al. [57]. The reduction of the surface energy with decreas-
ing particle diameter is remarkable. Adapted with permission from [57],
copyright 2005 by America Chemical Society.

Ab initio calculations
Ab initio calculations are based on solutions of the Schrödinger

equation. However, it is well known that, except for the hydro-

gen atom, exact solutions of this equation do not exist. There-

fore, a large number of methods for numerical solutions have

been developed.

Most successful are calculations based on density functional

theory (DFT). This kind of modelling has some restrictions, i.e.,

the availability of a supercomputer and the limitation of the

temperature to 0 K. To some extent, the latter limitation and

also the restriction to particles with a relatively small number of

atoms can be overcome by combining ab initio calculations

with molecular dynamics simulations.

Figure 16: Surface energy of silver particles as function of the particle
diameter [49]. This graph shows the original values and those
corrected according to Holec et al. [53]. Except the systematic varia-
tion in the values for particles with sizes below ca. 2 nm, it is remark-
able that there is only a relatively small influence of the particle diame-
ter on the surface energy.

Typical examples for the application of this computational

strategy can be found in papers from Medasani et al. [49,58,59].

Figure 16 displays the results for calculations of the surface

energy of silver particles [49,58]. (The abbreviation DFT-GGA

stands for density functional theory using a generalized gradient

approximation, and EAM for an empirical embedded atom

method.) The values for the surface energy were calculated

using Equation 8. Medasani et al. [49,58,59] showed the influ-

ence of a correction for the particle size according to de Heer

[52]. This correction results in an increase in the particle radius

from 0.045 nm to 0.079 nm. According to the results of a very

detailed study of the electronic structure by Holec et al. [53] the
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value for the correction of the diameter should be in the range

of an atomic diameter (≈0.288 nm). Figure 16 displays the orig-

inal values of the surface energy and that after correction ac-

cording to Holec et al. [53]. The calculations by Medasani et al.

are based on the assumption of crystallized particles.

Looking at the results, it is remarkable that the values for parti-

cles with a diameter smaller than 2 nm (obtained by DFT calcu-

lations) vary so drastically. Furthermore, it is interesting to note

that after the correction, the dependence of the surface energy

on the diameter is more or less in the range of the dataset as a

whole. This result is somewhat similar to that obtained for gold

as displayed in Figure 13.

The results for aluminum particles displayed in Figure 17 ob-

tained by Medasani et al. [58] are, in general, very similar.

Also, in this case, the particles were assumed to be crystalline

and their shape close to spherical. After correction, a very mod-

erate dependence of the surface energy on the particle diameter

is obtained in this case. Only a slight decrease with decreasing

particle size is observed. It is remarkable that for particles of di-

ameter less than ≈2 nm, the results vary in a pattern similar to

the case of silver particles. Interestingly, the extrema are found

at the same particle diameters in both cases. One may question

if this is a systematic error or an indication of a structural fea-

ture. However, it is remarkable that the first extremum occurs,

in both cases, for a cluster consisting of 13 atoms and the

second one for a cluster size of 43 atoms. The number 13 is a

so-called “magic number” for cluster sizes; however, the num-

ber 43 is far off from the second magic number for clusters

consisting of 55 atoms.

Figure 17: Surface energy of aluminum particles as function of the
particle diameter [58]. This graph shows both the original values and
those corrected according to Holec et al. [53]. With the exception of the
systematic variation of the values for particle diameters below 2 nm,
the corrected values show a trend of decreasing surface energy with
decreasing particle size for particle diameters larger than 2 nm.

More detailed insight is provided by a thorough ab initio study

analyzing the Au55 cluster performed by Holec et al. [53] and

Vollath et al. [14]. These studies established the fact that the

most stable state of this cluster is glassy. The accompanying de-

termination of the surface energy using the approach of

Medasani et al. [49] resulted in a value of 1.36 J m−2 [51].

Since there are some doubts using this approach, a new concept

for estimation of the surface energy, based on the Kelvin equa-

tion, was developed. Extrapolating the Kelvin equation to 0 K,

one obtains

(9)

In this equation the quantities Q∞ and Q stand for the enthalpy

of sublimation of the bulk and the enthalpy of sublimation for

the particle in question, respectively. Vm stands for the molar

volume of the atoms in the particle and r for its radius. Also in

this case, the definition of the particle radius is a crucial prob-

lem that may be solved using a correction derived by Holec et

al. [53]. The enthalpy of sublimation is determined as the

binding energy of the outmost atoms of the particle. Figure 18

displays the binding energy for the atoms of the outmost layer

of the glassy Au55 cluster. To estimate the surface energy, the

binding energy of the atoms with the least coordination number

must be selected. Since this is, to some extent, a random

process, the scatter of these binding energies gives an indica-

tion for the scattering of the result. These considerations led to a

value of 1.51 ± 0.68 J m−1 for the surface energy of the Au55

cluster at 0 K, also covering the value of the surface energy

calculated according Equation 8.

Figure 18: Binding energy of the atoms in the outmost layer of an Au55
cluster [14]. Additionally, for each coordination number, the 1σ scat-
tering range is indicated. The atoms with the highest probability to be
evaporated are those with the smallest coordination number and the
smallest binding energy.
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Comparing the two approaches to calculate the surface energy

shown above, one realizes a fundamental difference: The most

common approach [4] (applied by Medasani et al. [49]) does

not take the vapor pressure of the material into account. The ap-

proach developed by Vollath et al. [14] is based on the Kelvin

equation and assumes, therefore, equilibrium with the vapor

phase. However, at 0 K, this difference is not relevant.

Conclusion
Studying the size dependence of the surface energy of nanopar-

ticles, one finds different tendencies depending on the method

of calculation. Considerations based on continuum thermody-

namics predict decreasing values of the surface energy as

function of decreasing particle size. This tendency is supported

by

• the reduction of the number of next neighbors of the sur-

face atoms, although this tendency is at least partly

compensated by an increase of the binding energy and

• by the formation of a quasi-liquid phase at the surface.

The latter finding has been confirmed by experimental results.

However, these results have not been reflected in the published

values for the surface energy. On the contrary, the molecular

dynamics calculation led to significantly increasing values of

the surface energy with decreasing particle size. However, it

was shown that the predicted increase of the surface energy may

be explained by the insufficient determination of the particle di-

ameter and, consequently, of the particle surface. After applying

improved values for the particle size and shape, the resulting

values of the surface energy no longer exhibit a significant de-

pendence on the particle size.

The results of the ab initio calculations show a similar tendency.

Also, in this case, the values for the surface energy show only a

minor dependence on the particle size after applying the correc-

tion of the particle size according to Holec et al. [53]. However,

in the size range below ≈2 nm, a “systematic scattering” or vari-

ation of the results is observed, which could be explained by

structural variations or systematic errors in the calculations. The

argument of structural variations is supported by findings of

Vollath et al. [14] that the Au55 cluster is not crystallized but

rather glassy. Such structural variations were, on the basis of

continuum thermodynamics, considerations predicted by

Vollath et al. [24], too.

Summarizing the various results for the surface energy study of

nanoparticles, one may state that

• there exists only a minor dependence of the surface

energy on the particle size,

• at higher temperatures, where the surface is covered with

a liquid or quasi-liquid layer, a slight decrease of the sur-

face energy may be expected, and

• indications exist that structural modifications for parti-

cles of diameter less than ≈2 nm may lead to a minor

scattering of the values for the surface energy.

Summarizing these findings, it may be recommended to use

data for the bulk material when data for the equivalent nanoma-

terial is not available.
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